Developing a Profiling Glider pH Sensor for High Resolution Coastal Ocean Acidification Monitoring

> Grace Saba, Elizabeth Wright-Fairbanks, Travis Miles Baoshan Chen, Wei-Jun Cai, Kui Wang Andrew Barnard, Charles Branham Clayton Jones

THE STATE UNIVERSIT OF NEW JERSEY

Ocean Acidification

Driven by the ocean's absorption of increasing atmospheric carbon dioxide (CO_2)

Center for Ocean Observing Leadership

JTGERS

Ocean Acidification - Projections

2013 IPCC Fifth Assessment Report (AR5)

Center for Ocean Observing Leadership

GERS

Links Between People and Coastal Acidification

Center for Ocean Observing Leadership

JTGERS

Traditional pH Monitoring Platforms

Traditional pH Monitoring Platforms

Most gaps can be addressed through advancements in pH sensor technology

Improvements in Design and Application

Depth-profiling deep-sea ISFET pH

Academic and Industry collaboration: Ken Johnson, MBARI Todd Martz, Scripps Honeywell Sea-Bird Scientific

*Finalists in the Wendy Schmidt Ocean Health XPRIZE

Advantages of Glider-based pH Monitoring

Project Goals and Applications

- Develop and integrate a Deep-Sea ISFET profiling pH sensor into a glider and conduct laboratory testing and calibration
- Conduct glider deployments to demonstrate high resolution measurements of pH in coastal regions in near real-time
- Determine natural variability that will provide a framework to better study organism response and design more realistic experiments
- Identify and monitor high-risk areas that are more prone to periods of reduced pH and/or high pH variability

Enable better modeling and management of essential habitats in future, more acidic oceans

Sensor Development and Integration

Center for Ocean Observing Leadership

TGERS

Tank Tests

- Conditioning time: 4-6 days
- Sensor precision:

JTGERS

- Tank: +/- 0.000-0.007
- Field: +/- 0.000-0.055

First pH Glider Deployments

JTGERS

pH Response Time Lag

Corrected on an individual segment basis

pH Response Time Lag

RUTGERS

œ

Cross Shelf Profiles

May 2018 – NJ cross-shelf

-200 -200 05/05 05/10 05/15 05/20 31 32 33 34 35

TGERS

Cross Shelf Profiles

May 2018 – NJ cross-shelf

-200 -200 05/05 05/10 05/15 05/20 31 32 33 34 35

TGERS

Cross Shelf Profiles

May 2018 – NJ cross-shelf

pH-Temperature-Salinity Relationships

A: Near-shore surface water
B: Mid-shelf surface water
C: Shelf break
D: Low pH bottom water (mid-shelf and shelf break)

Next Steps – Glider-Based OA Networks

Regional Level

A Regional Slocum Glider Network in the Mid-Atlantic Bight Leverages Broad Community Engagement

Schofield et al. 2010, MTS

JTGERS

Next Steps – Glider-Based OA Networks

National Level

Toward a U.S. IOOS[®] Underwater Glider Network Plan: Part of a comprehensive subsurface observing system Glider tracks along the U.S. coast: 2002-2014

"Glider technology may be able to resolve some of the issues involved in measuring essential ocean variables like sea surface salinity, pCO₂, pH, nutrients, and phytoplankton biomass, health, and composition."

"As pH sensors mature, gliders will provide excellent platforms for monitoring ocean acidification."

Next Steps – Glider-Based OA Networks

Global Level

Testor et al., in prep Ocean Obs'19

Thanks! saba@marine.rutgers.edu

NSF OTIC Program (OCE #1634520)

